An identified histaminergic neuron can modulate the outputs of buccal-cerebral interneurons in Aplysia via presynaptic inhibition.

نویسندگان

  • H J Chiel
  • I Kupfermann
  • K R Weiss
چکیده

We have identified 2 buccal-cerebral interneurons (BCIs), B17 and B18, that appear to be involved in the coordination of feeding behavior in Aplysia. The BCIs have their cell bodies in the buccal ganglion, but send axons to the cerebral ganglion via the cerebral-buccal connectives. The BCIs appear to make monosynaptic connections with neurons in the cerebral ganglion that modulate extrinsic muscles involved in feeding behavior. B17 and B18 are activated antiphasically during a motor program induced by stimulating the esophageal nerve and appear to "read out" different phases of the buccal program to different cells in the cerebral ganglion. B17 and B18 are not necessary, and probably not sufficient, to generate the buccal program. These BCIs, and other cells like them in the buccal ganglion, may be capable of coordinating the activity of the intrinsic muscles of the buccal mass with the activity of its extrinsic muscles, and perhaps with those of the lips, mouth, and tentacles. Identified histaminergic neuron, C2, can modulate the outputs of the BCIs onto their synaptic followers in the cerebral ganglion. Firing of C2 inhibits spiking of the BCIs, probably via cerebral-buccal interneurons. C2 also decreases the size of the EPSP that B17 and B18 evoke in cerebral neuron C4. C2 appears to do so monosynaptically, and it decreases the conductance of C4, ruling out one possible postsynaptic mechanism of action. Variance analysis of the EPSPs evoked by B18 supports the hypothesis that C2 acts presynaptically to decrease the release of transmitter. Applications of histamine to the solution bathing the neuron mimic the effect of firing C2 and reduce the size of the EPSPs B18 induces in C4. The bath-applied histamine appears to act directly on B18, since it elicits a voltage-dependent increased conductance hyperpolarization recorded in the soma of B18, and the hyperpolarization persists in a solution in which synaptic transmission has been blocked. Histamine did not produce any marked changes of the duration of a TEA-broadened somatic action potential of B18. To the extent that the soma of B18 reflects the membrane properties of its synaptic terminal region, the data suggest that histamine may produce presynaptic inhibition by hyperpolarizing the synaptic terminal region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transforming tonic firing into a rhythmic output in the Aplysia feeding system: presynaptic inhibition of a command-like neuron by a CpG element.

Tonic stimuli can elicit rhythmic responses. The neural circuit underlying Aplysia californica consummatory feeding was used to examine how a maintained stimulus elicits repetitive, rhythmic movements. The command-like cerebral-buccal interneuron 2 (CBI-2) is excited by tonic food stimuli but initiates rhythmic consummatory responses by exciting only protraction-phase neurons, which then excite...

متن کامل

Compartmentalization of information processing in an aplysia feeding circuit interneuron through membrane properties and synaptic interactions.

We describe a pair of cerebral-to-buccal interneurons, CBI-5/6, which have outputs and inputs in two ganglia. The soma in the cerebral ganglion received synaptic inputs during buccal motor programs (BMPs) and after mechanical stimulation of the lips. During BMPs the soma received antidromic spikes generated in processes in the buccal ganglion. The soma was driven into a plateau potential by eac...

متن کامل

An identified histaminergic neuron modulates feeding motor circuitry in Aplysia.

An identified histaminergic neuron, C2, in the marine mollusk Aplysia is a complex mechanoafferent which appears to contribute to the maintenance of food arousal by means of its synaptic connections to the metacerebral cell (MCC). Because C2 also has extensive synaptic outputs to neurons other than the MCC, we studied its possible motor functions. We identified several synaptic followers of C2 ...

متن کامل

C-PR neuron of Aplysia has differential effects on "Feeding" cerebral interneurons, including myomodulin-positive CBI-12.

Head lifting and other aspects of the appetitive central motive state that precedes consummatory feeding movements in Aplysia is promoted by excitation of the C-PR neuron. Food stimuli activate C-PR as well as a small population of cerebral-buccal interneurons (CBIs). We wished to determine if firing of C-PR produced differential effects on the various CBIs or perhaps affected all the CBIs unif...

متن کامل

A newly identified buccal interneuron initiates and modulates feeding motor programs in aplysia.

Despite considerable progress in characterizing the feeding central pattern generator (CPG) in Aplysia, the full complement of neurons that generate feeding motor programs has not yet been identified. The distribution of neuropeptide-containing neurons in the buccal and cerebral ganglia can be used as a tool to identify additional elements of the feeding circuitry by providing distinctions betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 1  شماره 

صفحات  -

تاریخ انتشار 1988